Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Chemistry ; 30(22): e202304276, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38345891

Volatile organic compounds (VOCs), recognized as hazardous air contaminants, prompt the exploration of sustainable air purification methods. Solar photocatalytic oxidation emerges as a promising solution, utilizing semiconductor photocatalysts like titanium dioxide (TiO2). However, the raw material crisis necessitates reduced TiO2 usage, leading to investigations into TiO2 modification techniques. The study introduces a novel approach by employing natural fibers, specifically loofah sponge, as a TiO2 support. This method aims to maintain photocatalytic activity while minimizing TiO2 content. The article explores using halloysite, a natural clay mineral, as a supportive material, enhancing mechanical strength and adsorption properties. The resulting TiO2/loofah-halloysite composites are evaluated for their efficacy in gas-phase photocatalytic oxidation of toluene and ethanol, chosen as representative VOCs. The conversion of toluene and ethanol on the composite was 88 % and 39 %, respectively, with high selectivity toward CO2. In addition to its high performance, the bio-composite was stable for several conversion cycles, keeping the conversion activity unchanged. The study contributes to developing green hybrid materials for VOC removal, showcasing potential applications across industries.

2.
Pharmacy (Basel) ; 12(1)2024 Jan 12.
Article En | MEDLINE | ID: mdl-38251407

INTRODUCTION: The designer benzodiazepine (DBZD) market continues to expand whilst evading regulatory controls. The widespread adoption of social media by pro-drug use communities encourages positive discussions around DBZD use/misuse, driving demand. This research addresses the evolution of three popular DBZDs, etizolam (E), flubromazepam (F), and pyrazolam (P), available on the drug market for over a decade, comparing the quantitative chemical analyses of tablet samples, purchased from the internet prior to the implementation of the Psychoactive Substances Act UK 2016, with the thematic netnographic analyses of social media content. METHOD: Drug samples were purchased from the internet in early 2016. The characterisation of all drug batches were performed using UHPLC-MS and supported with 1H NMR. In addition, netnographic studies across the platforms X (formerly Twitter) and Reddit, between 2016-2023, were conducted. The latter was supported by both manual and artificial intelligence (AI)-driven thematic analyses, using numerous.ai and ChatGPT, of social media threads and discussions. RESULTS: UHPLC-MS confirmed the expected drug in every sample, showing remarkable inter/intra batch variability across all batches (E = 13.8 ± 0.6 to 24.7 ± 0.9 mg; F = 4.0 ± 0.2 to 23.5 ± 0.8 mg; P = 5.2 ± 0.2 to 11.5 ± 0.4 mg). 1H NMR could not confirm etizolam as a lone compound in any etizolam batch. Thematic analyses showed etizolam dominated social media discussions (59% of all posts), with 24.2% of posts involving sale/purchase and 17.8% detailing new administration trends/poly-drug use scenarios. Artificial intelligence confirmed three of the top five trends identified manually. CONCLUSIONS: Purity variability identified across all tested samples emphasises the increased potential health risks associated with DBZD consumption. We propose the global DBZD market is exacerbated by surface web social media discussions, recorded across X and Reddit. Despite the appearance of newer analogues, these three DBZDs remain prevalent and popularised. Reporting themes on harm/effects and new developments in poly-drug use trends, demand for DBZDs continues to grow, despite their potent nature and potential risk to life. It is proposed that greater controls and constant live monitoring of social media user content is warranted to drive active regulation strategies and targeted, effective, harm reduction strategies.

3.
Chemistry ; 30(12): e202303984, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38127103

In recent decades, many efforts have been devoted to studying reactions catalyzed in nanoconfined spaces. The most impressive aspect of catalysis in nanoconfined spaces is that the reactivity of the molecules can be smartly driven to disobey classical behavior. A green and efficient three-component aza-Darzens (TCAD) reaction using a catalytic amount of γ-cyclodextrins (CDs) in water has been developed to synthesize N-phenylaziridines. CDs effectively performed this reaction in an environmentally friendly setting, achieving good yields. The same reaction was then performed using polymeric γ-CD such as a γ-cyclodextrin polymer crosslinked (GCDPC) with epichlorohydrin, a sponge-like macroporous γ-cyclodextrin-based cryogel (GCDC), and a γ-cyclodextrin-based hydrogel (GCDH). The homogeneous and heterogeneous catalyst recovery was then studied, and it was proved to be easily recycled several times without relevant activity loss. Water, as a unique and eco-friendly reaction medium, has been utilized for the first time, to the best of our knowledge, in this reaction. The inclusion of the reagents in CDs has been studied and rationalized by NMR spectroscopy experiments and molecular modeling calculations. The credit of the presented protocol includes good yields and catalyst reusability and precludes the use of organic solvents.

4.
Brain Sci ; 13(11)2023 Oct 24.
Article En | MEDLINE | ID: mdl-38002464

The emergence of glucagon-like peptide-1 receptor agonists (GLP-1 RAs; semaglutide and others) now promises effective, non-invasive treatment of obesity for individuals with and without diabetes. Social media platforms' users started promoting semaglutide/Ozempic as a weight-loss treatment, and the associated increase in demand has contributed to an ongoing worldwide shortage of the drug associated with levels of non-prescribed semaglutide intake. Furthermore, recent reports emphasized some GLP-1 RA-associated risks of triggering depression and suicidal thoughts. Consistent with the above, we aimed to assess the possible impact of GLP-1 RAs on mental health as being perceived and discussed in popular open platforms with the help of a mixed-methods approach. Reddit posts yielded 12,136 comments, YouTube videos 14,515, and TikTok videos 17,059, respectively. Out of these posts/entries, most represented matches related to sleep-related issues, including insomnia (n = 620 matches); anxiety (n = 353); depression (n = 204); and mental health issues in general (n = 165). After the initiation of GLP-1 RAs, losing weight was associated with either a marked improvement or, in some cases, a deterioration, in mood; increase/decrease in anxiety/insomnia; and better control of a range of addictive behaviors. The challenges of accessing these medications were a hot topic as well. To the best of our knowledge, this is the first study documenting if and how GLP-1 RAs are perceived as affecting mood, mental health, and behaviors. Establishing a clear cause-and-effect link between metabolic diseases, depression and medications is difficult because of their possible reciprocal relationship, shared underlying mechanisms and individual differences. Further research is needed to better understand the safety profile of these molecules and their putative impact on behavioral and non-behavioral addictions.

5.
Org Lett ; 25(35): 6464-6468, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37641853

Friedel-Crafts benzoylation of N-methylpyrrole 2 can run inside the confined space of the hexameric resorcinarene capsule C. The bridged water molecules at the corner of C act as H-bonding donor groups to polarize the C-Cl bond of benzoyl chlorides 3a-f. Confinement effects on the regiochemistry of the FC benzoylation of N-methylpyrrole are observed. The nature of the para-substituents of 3a-f and their ability to establish H-bonds with the water molecules of C work synergistically with the steric constrictions imposed by the capsule to drive the regiochemistry of products 4a-f. QM investigations indicate that inside the cavity of C, the FC benzoylation of 2 has a bimolecular concerted SN2 mechanism, appropriately, above-plane nucleophilic vinylic substitution (SNVπ)─supported by H-bonding interactions between water molecules and both the leaving Cl atom and the carbonyl group.

6.
Nanomaterials (Basel) ; 13(14)2023 Jul 10.
Article En | MEDLINE | ID: mdl-37513047

Bacterial involvement in cancer's development, along with their impact on therapeutic interventions, has been increasingly recognized. This has prompted the development of novel strategies to disrupt essential biological processes in microbial cells. Among these approaches, metal-chelating agents have gained attention for their ability to hinder microbial metal metabolism and impede critical reactions. Nanotechnology has also contributed to the antibacterial field by offering various nanomaterials, including antimicrobial nanoparticles with potential therapeutic and drug-delivery applications. Halloysite nanotubes (HNTs) are naturally occurring tubular clay nanomaterials composed of aluminosilicate kaolin sheets rolled multiple times. The aluminum and siloxane groups on the surface of HNTs enable hydrogen bonding with biomaterials, making them versatile in various domains, such as environmental sciences, wastewater treatment, nanoelectronics, catalytic studies, and cosmetics. This study aimed to create an antibacterial material by combining the unique properties of halloysite nanotubes with the iron-chelating capability of kojic acid. A nucleophilic substitution reaction involving the hydroxyl groups on the nanotubes' surface was employed to functionalize the material using kojic acid. The resulting material was characterized using infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM), and its iron-chelating ability was assessed. Furthermore, the potential for drug loading-specifically, with resveratrol and curcumin-was evaluated through ultraviolet (UV) analysis. The antibacterial assay was evaluated following CLSI guidelines. The results suggested that the HNTs-kojic acid formulation had great antibacterial activity against all tested pathogens. The outcome of this work yielded a novel bio-based material with dual functionality as a drug carrier and an antimicrobial agent. This innovative approach holds promise for addressing challenges related to bacterial infections, antibiotic resistance, and the development of advanced therapeutic interventions.

7.
Arch Pharm (Weinheim) ; 356(10): e2300314, 2023 Oct.
Article En | MEDLINE | ID: mdl-37518500

Current clinical research suggests that fatty acid-binding protein 4 inhibitors (FABP4is), which are of biological and therapeutic interest, may show potential in treating cancer and other illnesses. We sought to uncover new structures through the optimization of the previously reported 4-amino and 4-ureido pyridazinone-based series of FABP4is as part of a larger research effort to create more potent FABP4 inhibitors. This led to the identification of 14e as the most potent analog with IC50 = 1.57 µM, which is lower than the IC50 of the positive control. Advanced modeling investigations and in silico absorption, distribution, metabolism, and excretion - toxicity calculations suggested that 14e represents a potential candidate for in vivo studies such as FABP4i.


Fatty Acid-Binding Proteins , Structure-Activity Relationship , Fatty Acid-Binding Proteins/metabolism
9.
RSC Med Chem ; 14(4): 592-623, 2023 Apr 26.
Article En | MEDLINE | ID: mdl-37122545

In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, and positron emission tomography (PET) are extensively available and routinely used for disease diagnosis and treatment. Peptide-based targeting PET probes are usually small peptides with high affinity and specificity to specific cellular and tissue targets opportunely engineered for acting as PET probes. For instance, either the radioisotope (e.g., 18F, 11C) can be covalently linked to the peptide-probe or another ligand that strongly complexes the radioisotope (e.g., 64Cu, 68Ga) through multiple coordinative bonds can be chemically conjugated to the peptide delivery moiety. The main advantages of these probes are that they are cheaper than classical antibody-based PET tracers and can be efficiently chemically modified to be radiolabelled with virtually any radionuclide making them very attractive for clinical use. The goal of this review is to report and summarize recent technologies in peptide PET-based molecular probes synthesis and radiolabelling with the most used radioisotopes in 2022.

10.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article En | MEDLINE | ID: mdl-37047831

In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are extensively available and routinely used for disease diagnosis. PET probes with peptide-based targeting are typically composed of small peptides especially developed to have high affinity and specificity for a range of cellular and tissue targets. These probes' key benefits include being less expensive than traditional antibody-based PET tracers and having an effective chemical modification process that allows them to be radiolabeled with almost any radionuclide, making them highly appealing for clinical usage. Currently, as with every pharmaceutical design, the use of in silico strategies is steadily growing in this field, even though it is not part of the standard toolkit used during radiopharmaceutical design. This review describes the recent applications of computational design approaches in the design of novel peptide-based radiopharmaceuticals.


Peptides , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Radioisotopes , Radiopharmaceuticals , Computer-Aided Design
11.
Molecules ; 28(6)2023 Mar 17.
Article En | MEDLINE | ID: mdl-36985701

Ordinary small molecule de novo drug design is time-consuming and expensive. Recently, computational tools were employed and proved their efficacy in accelerating the overall drug design process. Molecular dynamics (MD) simulations and a derivative of MD, steered molecular dynamics (SMD), turned out to be promising rational drug design tools. In this paper, we report the first application of SMD to evaluate the binding properties of small molecules toward FABP4, considering our recent interest in inhibiting fatty acid binding protein 4 (FABP4). FABP4 inhibitors (FABP4is) are small molecules of therapeutic interest, and ongoing clinical studies indicate that they are promising for treating cancer and other diseases such as metabolic syndrome and diabetes.


Metabolic Syndrome , Molecular Dynamics Simulation , Humans , Drug Design , Fatty Acid-Binding Proteins/metabolism
12.
Viruses ; 15(3)2023 03 01.
Article En | MEDLINE | ID: mdl-36992372

It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules' antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules' activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.


Coronavirus 229E, Human , Coronavirus OC43, Human , Animals , Humans , Spike Glycoprotein, Coronavirus/metabolism , Enoxaparin , Molecular Docking Simulation , Heparitin Sulfate/metabolism
13.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Article En | MEDLINE | ID: mdl-36839109

It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate (pHEMA) to actively support a nanocontainer filled with the drug. Specifically, during the cryo-polymerization of HEMA, halloysite nanotubes (HNTs) embedded with thymol (Thy) were added as a component. Thy is a natural pharmaceutical ingredient used to confer wound healing properties to the material, whereas HNTs were used to entrap the Thy into the lumen to ensure a sustained release of the drug. The as-obtained material was characterized by chemical-physical methods, and tests were performed to assess its ability for a prolonged drug release. The results showed that the adopted synthetic procedure allows the formation of a super absorbent system with good swelling ability that can contain up to 5.5 mg of Thy in about 90 mg of dried sponge. Releasing tests demonstrated the excellent material's ability to perform a slow controlled delivery of 62% of charged Thy within a week. As humans venture deeper into space, with more extended missions, limited medical capabilities, and a higher risk of skin wounds, the proposed device would be a versatile miniaturized device for skin repair in space.

14.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article En | MEDLINE | ID: mdl-36674938

In the framework of the multitarget inhibitor study, we report an in silico analysis of 1,2-dibenzoylhydrazine (DBH) with respect to three essential receptors such as the ecdysone receptor (EcR), urease, and HIV-integrase. Starting from a crystallographic structural study of accidentally harvested crystals of this compound, we performed docking studies to evaluate the inhibitory capacity of DBH toward three selected targets. A crystal morphology prediction was then performed. The results of our molecular modeling calculations indicate that DBH is an excellent candidate as a ligand to inhibit the activity of EcR receptors and urease. Docking studies also revealed the activity of DBH on the HIV integrase receptor, providing an excellent starting point for developing novel inhibitors using this molecule as a starting lead compound.


Urease , Models, Molecular , Molecular Docking Simulation
15.
Chem Biol Drug Des ; 101(1): 40-51, 2023 01.
Article En | MEDLINE | ID: mdl-35838189

Currently, increasing availability and popularity of designer benzodiazepines (DBZDs) constitutes a primary threat to public health. To assess this threat, the biological activity/potency of DBZDs was investigated using in silico studies. Specific Quantitative Structure Activity Relationship (QSAR) models were developed in Forge™ for the prediction of biological activity (IC50 ) on the γ-aminobutyric acid A receptor (GABA-AR) of previously identified classified and unclassified DBDZs. A set of new potential ligands resulting from scaffold hopping studies conducted with MOE® was also evaluated. Two generated QSAR models (i.e. 3D-field QSAR and RVM) returned very good performance statistics (r2  = 0.98 [both] and q2  = 0.75 and 0.72, respectively). The DBZDs predicted to be the most active were flubrotizolam, clonazolam, pynazolam and flucotizolam, consistently with what reported in literature and/or drug discussion fora. The scaffold hopping studies strongly suggest that replacement of the pendant phenyl moiety with a five-membered ring could increase biological activity and highlight the existence of a still unexplored chemical space for DBZDs. QSAR could be of use as a preliminary risk assessment model for (newly) identified DBZDs, as well as scaffold hopping for the creation of computational libraries that could be used by regulatory bodies as support tools for scheduling procedures.


Illicit Drugs , Quantitative Structure-Activity Relationship , Ligands , Models, Molecular
16.
Biometals ; 36(2): 321-337, 2023 04.
Article En | MEDLINE | ID: mdl-35366134

Iron levels in mitochondria are critically important for the normal functioning of the organelle. Abnormal levels of iron and the associated formation of toxic oxygen radicals have been linked to a wide range of diseases and consequently it is important to be able to both monitor and control levels of the mitochondrial labile iron pool. To this end a series of iron chelators which are targeted to mitochondria have been designed. This overview describes the synthesis of some of these molecules and their application in monitoring mitochondrial labile iron pools and in selectively removing excess iron from mitochondria.


Iron Chelating Agents , Iron Overload , Humans , Iron Chelating Agents/pharmacology , Iron Chelating Agents/chemistry , Iron/chemistry , Mitochondria , Reactive Oxygen Species/analysis
17.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36355506

Fatty acid binding protein (FABP4) inhibitors are of synthetic and therapeutic interest and ongoing clinical studies indicate that they may be a promise for the treatment of cancer, as well as other diseases. As part of a broader research effort to develop more effective FABP4 inhibitors, we sought to identify new structures through a two-step computing assisted molecular design based on the established scaffold of a co-crystallized ligand. Novel and potent FABP4 inhibitors have been developed using this approach and herein we report the synthesis, biological evaluation and molecular docking of the 4-amino and 4-ureido pyridazinone-based series.

18.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article En | MEDLINE | ID: mdl-36077465

The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.


COVID-19 Drug Treatment , SARS-CoV-2 , Amino Acid Sequence , Humans , Membrane Fusion , Molecular Docking Simulation , Peptides/chemistry , Spike Glycoprotein, Coronavirus/metabolism
19.
Molecules ; 27(15)2022 Aug 04.
Article En | MEDLINE | ID: mdl-35956914

Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.


Clinical Trials as Topic , Phosphodiesterase 4 Inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 4 , Dermatitis, Atopic/drug therapy , Humans , Phosphodiesterase 4 Inhibitors/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy
20.
Dalton Trans ; 51(34): 12796-12803, 2022 Aug 30.
Article En | MEDLINE | ID: mdl-35972045

Expression of the cellular transmembrane receptor αvß6 integrin is mostly restricted to malignant epithelial cells in a wide variety of carcinomas, including pancreatic and others derived from epithelial tissues. Thus, this protein is considered an attractive target for tumour imaging and therapy. Two different 68Ga hexadentate tris (3,4-hydroxypyridinone) (THP) chelators were produced in this study and coupled to the αvß6 integrin-selective peptide cyclo(FRGDLAFp(NMe)K) via NHS chemistry. Radiolabelling experiments confirmed a high radiochemical yield of the two PET probes. In addition, cellular binding studies showed high binding affinities in the nanomolar range. The two integrin αvß6-peptide-THP synthesized and radiolabeled in this study will facilitate in vivo monitoring of transmembrane receptor αvß6 integrin by using the advantage of THP chemistry for rapid, efficient and stable gallium chelation.


Gallium Radioisotopes , Positron-Emission Tomography , Antigens, Neoplasm/metabolism , Chelating Agents , Integrin alphaVbeta3/metabolism , Integrins , Peptides/metabolism , Positron-Emission Tomography/methods , Tissue Distribution
...